521 research outputs found

    On the "Universal" N=2 Supersymmetry of Classical Mechanics

    Get PDF
    In this paper we continue the study of the geometrical features of a functional approach to classical mechanics proposed some time ago. In particular we try to shed some light on a N=2 "universal" supersymmetry which seems to have an interesting interplay with the concept of ergodicity of the system. To study the geometry better we make this susy local and clarify pedagogically several issues present in the literature. Secondly, in order to prepare the ground for a better understanding of its relation to ergodicity, we study the system on constant energy surfaces. We find that the procedure of constraining the system on these surfaces injects in it some local grassmannian invariances and reduces the N=2 global susy to an N=1.Comment: few misprints fixed with respect to Int.Jour.Mod.Phys.A vol 16, no15 (2001) 270

    A Simple Algebraic Derivation of the Covariant Anomaly and Schwinger Term

    Full text link
    An expression for the curvature of the "covariant" determinant line bundle is given in even dimensional space-time. The usefulness is guaranteed by its prediction of the covariant anomaly and Schwinger term. It allows a parallel derivation of the consistent anomaly and Schwinger term, and their covariant counterparts, which clarifies the similarities and differences between them. In particular, it becomes clear that in contrary to the case for anomalies, the difference between the consistent and covariant Schwinger term can not be extended to a local form on the space of gauge potentials.Comment: 16 page

    Gravitational Instantons from Gauge Theory

    Full text link
    A gauge theory can be formulated on a noncommutative (NC) spacetime. This NC gauge theory has an equivalent dual description through the so-called Seiberg-Witten (SW) map in terms of an ordinary gauge theory on a commutative spacetime. We show that all NC U(1) instantons of Nekrasov-Schwarz type are mapped to ALE gravitational instantons by the exact SW map and that the NC gauge theory of U(1) instantons is equivalent to the theory of hyper-Kaehler geometries. It implies the remarkable consequence that ALE gravitational instantons can emerge from local condensates of purely NC photons.Comment: 4 pages with two columns; comments and references added, to appear in Phys. Rev. Let

    Heterotic T-Duality and the Renormalization Group

    Get PDF
    We consider target space duality transformations for heterotic sigma models and strings away from renormalization group fixed points. By imposing certain consistency requirements between the T-duality symmetry and renormalization group flows, the one loop gauge beta function is uniquely determined, without any diagram calculations. Classical T-duality symmetry is a valid quantum symmetry of the heterotic sigma model, severely constraining its renormalization flows at this one loop order. The issue of heterotic anomalies and their cancelation is addressed from this duality constraining viewpoint.Comment: 17 pages, Late

    Path-Integral Quantization of the (2,2) String

    Get PDF
    A complete treatment of the (2,2) NSR string in flat (2+2) dimensional space-time is given, from the formal path integral over N=2 super Riemann surfaces to the computational recipe for amplitudes at any loop or gauge instanton number. We perform in detail the superconformal gauge fixing, discuss the spectral flow, and analyze the supermoduli space with emphasis on the gauge moduli. Background gauge field configurations in all instanton sectors are constructed. We develop chiral bosonization on punctured higher-genus surfaces in the presence of gauge moduli and instantons. The BRST cohomology is recapitulated, with a new space-time interpretation for picture-changing. We point out two ways of combining left- and right-movers, which lead to different three-point functions.Comment: 36 pages, LaTeX; published version (typos & eq.(7.12) corrected

    Massive Hyper-Kahler Sigma Models and BPS Domain Walls

    Full text link
    With the non-Abelian Hyper-Kahler quotient by U(M) and SU(M) gauge groups, we give the massive Hyper-Kahler sigma models that are not toric in the N=1 superfield formalism. The U(M) quotient gives N!/[M! (N-M)!] (N is a number of flavors) discrete vacua that may allow various types of domain walls, whereas the SU(M) quotient gives no discrete vacua. We derive BPS domain wall solution in the case of N=2 and M=1 in the U(M) quotient model.Comment: 16 pages, 1 figure, contribution to the Proceedings of the International Conference on "Symmetry Methods in Physics (SYM-PHYS10)" held at Yerevan, Armenia, 13-19 Aug. 200

    A cosmotopological relation for a unified field theory

    Full text link
    I present an argument, based on the topology of the universe, why there are three generations of fermions. The argument implies a preferred unified gauge group of SU(5), but with SO(10) representations of the fermions. The breaking pattern SU(5)→SU(3)×SU(2)×U(1)SU(5) \to SU(3) \times SU(2) \times U(1) is preferred over the pattern SU(5)→SU(4)×U(1)SU(5) \to SU(4) \times U(1). On the basis of the argument one expects an asymmetry in the microwave data, which might have been detected already.Comment: 6 page

    Non-linear Vacuum Phenomena in Non-commutative QED

    Get PDF
    We show that the classic results of Schwinger on the exact propagation of particles in the background of constant field-strengths and plane waves can be readily extended to the case of non-commutative QED. It is shown that non-perturbative effects on constant backgrounds are the same as their commutative counterparts, provided the on-shell gauge invariant dynamics is referred to a non-perturbatively related space-time frame. For the case of the plane wave background, we find evidence of the effective extended nature of non-commutative particles, producing retarded and advanced effects in scattering. Besides the known `dipolar' character of non-commutative neutral particles, we find that charged particles are also effectively extended, but they behave instead as `half-dipoles'.Comment: LaTeX, 23 p

    Comments on Supersymmetric Vector and Matrix Models

    Full text link
    Some results in random matrices are generalized to supermatrices, in particular supermatrix integration is reduced to an integration over the eigenvalues and the resulting volume element is shown to be equivalent to a one dimensional Coulomb gas of both positive and negative charges.It is shown that,for polynomial potentials, after removing the instability due to the annihilation of opposite charges, supermatrix models are indistinguishable from ordinary matrix models, in agreement with a recent result by Alvarez-Gaume and Manes. It is pointed out however that this may not be true for more general potentials such as for instance the supersymmetric generalization of the Penner model.Comment: 6 page

    Some Correlation Functions of Minimal Superconformal Models Coupled to Supergravity

    Full text link
    We compute general three-point functions of minimal superconformal models coupled to supergravity in the Neveu-Schwarz sector for spherical topology thus extending to the superconformal case the results of Goulian and Li and of Dotsenko.Comment: 15 page
    • …
    corecore